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S u m m a ~  

A numerical method is presented for computing two-dimensional potential flow about a wing with a cusped 
trailing edge immersed beneath the free surface of a running stream of infinite depth. The full non-linear 
boundary conditions are retained at the free surface of the fluid, and the conditions on the hydrofoil are also 
stated exactly. The problem is solved numerically using integral-equation techniques combined with Newton's 
method. Surface profiles and the pressure distribution on the body are shown for different body geometries. 

1. Introduction 

This paper is concerned with the flow of an ideal fluid about  a hydrofoil  immersed 
beneath the free surface. The fluid is of  infinite depth and flows steadily f rom left to right, 
The hydrofoil  is assumed to possess a blunt nose and a cusped trailing edge. 

Linearized theories may  be developed by regarding the hydrofoil  thickness as a small 
parameter .  This approach  is summarized by Wehausen and Lai tone ([1], page 583). As in 
the case of  thin-wing aerofoil theory, an integral equation is obtained for the strengths of  
the vortices distributed along the centre-line of  the foil; however, unlike classical aerofoil 
theory, there is no  simple closed-form solution to this equation. Nevertheless, it is still 
possible to demonstra te  that  the application of  the Kut ta  condit ion at the trailing edge 
gives a bounded  fluid velocity there, but  an infinite velocity at the leading edge. 

A numerical  investigation of  the non-l inear potential  flow about  a hydrofoil  has been 
under taken by Salvesen and von Kerczek [2]. They  solved Laplace 's  equat ion in a fluid of  
fixed finite depth using finite differences; clearly, such an approach  is not  directly 
available in the conceptual ly  simpler case of  infinite depth considered here. In  addition, 
finite-difference methods  are obviously difficult to apply in irregularly-shaped computa-  
tional domains.  However,  the authors are able to claim reasonable agreement  with 
experimental data. Fur ther  numerical techniques for linearized and non-l inear  free-surface 
problems are reviewed by Yeung [3], and the review article by Acos ta  [4] surveys the 
general field of  hydrofoil  vehicles. 

* Presently on leave at: Department of Mathematics, University of Queensland, St. Lucia 4067, Queensland, 
Australia. 

329 



330 

In this paper, the physical-plane integral-equation approach of Forbes [5] is used to 
formulate the fully non-linear potential-flow problem in infinitely deep fluid. The numeri- 
cal approximation of the flow equations then only involves mesh points distributed on the 
hydrofoil and on a portion of the free surface. These equations are solved by an efficient 
numerical method in which Newton's  method is used to find only the unknowns at the 
free surface, and the unknowns on the hydrofoil surface are updated at each iteration of 
Newton's  method. 

Our aims in the present paper are two-fold; firstly, we wish to present the current 
numerical scheme as a competitive method for the solution of problems of this type. The 
second aim concerns the fact that recent numerical work by von Kerczek and Salvesen [6], 
Schwartz [7] and Forbes [5,8,9] has shown that non-linear, drag-free solutions to water- 
wave problems are possible under certain circumstances, and we wish to establish whether 
or not such solutions are possible in the present problem also. 

2. Formulation of the problem 

We consider a fluid of infinite depth flowing with speed c from left to right, under the 
influence of the downward acceleration g of gravity. A cartesian coordinate system is 
located with the x-axis lying along the undisturbed surface and pointing in the direction of 
flow, and the y-axis pointing vertically. Now let an aerofoil of length 2L and width 2B be 
placed a distance H beneath the origin of the previously-defined coordinate system; the 
upper and lower surfaces of the foil are given by the equations y = b+_(x), - L  <~ x <~ L, 
and the disturbed free surface now has the location y = ~(x).  

The speed c and depth H are used as reference quantities with which to render the 
problem dimensionless. With this choice of non-dimensional coordinates, the solutions are 
seen to be dependent upon the three dimensionless parameters F = c(gH)-~/2 the Froude 
number  based on submergence depth, a = L / H  the foil half-length, and fl = B / H  its 
half-width. Since the fluid is ideal and flows irrotationally, its horizontal and vertical 
components of velocity u and v are able to be described in terms of a velocity potential 
and streamfunction ~k according to the Cauchy-Riemann equations 

u = ,~x  = + y ,  v = % = - , / , x .  ( 2 . a )  

Far  upstream, the fluid velocity satisfies the radiation condition 

u - * l , v ~ 0  as x ~ - ~ ,  (2.2) 

and on the body, the requirement that there be no normal component  of velocity gives 

v+_=u+b'+(x) on y=b+_(x),  -a<~x<~a, (2.3) 

where the + and - subscripts denote the upper and lower surfaces of the hydrofoil, 
respectively. On the free surface of the fluid, the usual kinematic and Bernoulli equations 
are imposed; specifically, 

u~ ' (x )=v ,  ½F2(u2+o2)+y=½F 2 on y = ' o ( x ) .  (2.4) 
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Figure 1. The dimensionless flow configuration, showing the assumed shape of the hydrofoil. 

It remains to choose a specific shape for the body. We shall consider the symmetric foil 
with zero attack angle described by the functions 

b + _ ( x ) = - l _ _ _ ~ / 3 ( 1 - x ) ~ s ( l + X ) ,  - a ~ < x ~ < a .  (2.5) 

This is a body with a blunt nose and a cusped trailing edge, and which achieves its 
maximum width 2fl when x = - a / 3 .  The hydrofoil shape and a schematic illustration of 
the flow are given in Fig. 1. At the trailing edge, we must impose the Kutta condition 

u + = u _ ,  v + = v _ = O  at x = a ,  (2.6) 

which is a statement that the flow leaves the foil tangentially. 
An integral-equation approach is now used to reformulate the problem. The derivation 

is similar to that given in Forbes [5] except that now there are two integral equations 
involved at the free surface and at the body. Accordingly, we shall omit some of the 
details. 

We observe that, in view of equations (2.1), the complex potential f =  ~ + i~k is an 
analytic function of z = x + iy,  and so Cauchy's Integral Formula is applied to the 
analytic function 

d f  
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in the doubly-connected fluid domain, on a contour consisting of the entire free surface, 
the body, and a semi-circle infinitely deep within the fluid, centred at the origin. The free 
surface is parametrized using arclength s, in terms of which the kinematic and Bernoulli 
equations (2.4) become 

~ s = 0  (2.7) 

and 

½FZdp 2 + y  = ½F 2. (2.8) 

In addition, the definition of arclength s requires that 

2+y2  1. (2.9) 
I s 

Suppose that a fixed point on the free surface has the value of arclength s, and that a 
moving point has arclength t. In order to apply Cauchy's Integral formula, the point z ( s )  
on the free surface must be by-passed with a semi-circle of vanishingly small radius, from 
which the contribution to the integral is -~r ix(z(s)) ;  consequently, we obtain 

•oo X(z(t))z'(t)d t X(X)dX 
¢ r i x ( z ( s ) ) = - ' l - ~ ¢  7 - ( 7 ( t ) - - S ~  + ~ o a y X - - z - ~ '  (2.10) 

where the integral around the body is to be taken in the negative (clockwise) sense. The 
contribution from the semi-circle at infinity is zero, since X(Z)  = 0 there, and the improper 
integral in equation (2.10) is to be interpreted as Cauchy principal valued for t ~ s. 

The complex number A = x  + ib_+(x) in equation (2.10) defines a location on the 
hydrofoil, and so the body-integral may be re-written as 

', ( u + -  1 - iv+)(1 + ib+)d~ f. ( u _ -  1 - i v ) ( 1  + i b ' ) d ~  
~ + i b + - z ( s )  - _~ ~ + i b  - z ( s )  

In order to cope with the inverse square-root singularities in these integrands as x --, - a ,  
introduced by the functions b'+_(x), we make the change of variable 

x = k 2 - a (2.11) 

on the body surface. In addition, we define 

b + ( x )  = B + ( k ) -- - l + ~ f l ~ 2 ~ k ( 2 - - ~ -  ), 

< ( x )  - ,,+_(k) = -+ v ( 2° ) 
(2.12) 

The desired integrodifferential equation for a point on the free surface is obtained by 
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taking the real part of equation (2.10), and making use of (2.3), (2.7) and (2.9). This gives 

~ [ ~ ' ( s ) x ' ( s ) -  11 

= F ¢ [q~'(t)-x'(t)][y(t)-y(s)] +y ' ( t )[x( t ) -x(s)]  dt J 
- o o  [x( t)-x(s)]2 +[y( t ) -y(s )]  2 

_2/'2¢2¢ ~ [ B + ( K ) - y ( s ) ] [ u + -  1 + o+D+] + [K  2 -  a -  x ( s ) ]  D+(K) KdK 
Jo [ K 2 - a - x ( s ) ]  2 +[B+(K)-y(s)]  2 

+2(  2¢~g[B_(K)-y(s)][u_-l+v D ] + [ K 2 - a - x ( s ) ] D _ ( K )  KdK. 
Jo [ K 2 - a -  x(s)]2+[ B_( K )-y(s)]  2 

(2.13) 

The derivation of the integrodifferential equation for points on the hydrofoil follows 
the same steps as outlined above. The resulting equation is 

, ,C[u±(k)-a] 

= i.~ [dp'(t)-x'(t)][y(t)-B+(k)] +y ' ( t ) [x ( t ) - k  2+a] 
dt J _  oo [x ( t ) - k2  +a]2 +[y(t)-B+_(k)] 2 

_2f0 ~[B+(K)-B+_(k)][u+- I +v+D+]+(K2-k2)D+(K) KdK 
( K  2 -  k2) 2 + [ B + ( K ) - B ± ( k ) ]  2 

+2_/" 2¢~- [ B _ ( K ) - B + ( k ) ] [ u _ -  1 + v D ] + ( K  2 -  k2)D_(K) 
KdK. 

( K  2 - k 2 )  2 + [ B  ( K ) - B + ( k ) ]  2 

(2.14) 

The constant C has the value 1, except when k = 2~a ,  which is the position of the cusped 
trailing edge, which we shall assume encloses an angle 3'. In this special case, C has the 
value 2 - y/~r. Note that equation (2.14) applies on both the upper and lower surfaces of 
the foil. 

The solution to this problem consists of finding the functions x(s), y(s) and 4,(s) at 
the free surface, and u±(k) and v ±(k)  at the body. The governing equations are (2.3), 
(2.8), (2.9), (2.13) and (2.14), subject to the radiation condition (2.2) and the Kutta 
condition (2.6). 

The drag and lift may now be computed from the solution to the above problem, using 
the Blasius formula. In the case of the drag R, this yields 

R = F2fo 2¢~-[ ( u 2_ + v 2_)D_-  ( u2+ + v 2 ) D +  ] kdk. (2.15) 

An alternative method for the determination of wave resistance R comes from straightfor- 
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ward momentum conservation in any control volume containing the hydrofoil. If x = x,. 
denotes a vertical line in the downstream wave field, then 

R ½r/2(Xw)_l_±F2 ~(x,,) V2 = = f-'o~ [ - ( u - 1 ) 2 ] ( X w ,  y ) d y .  (2.16) 

Since equation (2.16) is less sensitive than (2.15) to velocity gradients on the hydrofoil 
surface, it usually yields more accurate results, although it does require the determination 
of u and v at a line of points downstream, using the Cauchy Integral Formula. Once these 
have been determined, however, they provide the additional advantage of supplying a 
check on the accuracy of the computed solution, using the conservation of mass result 

f_n(x,,) r / [UtXw, y ) -  1]dy  + ~/(Xw) = 0. 
o~ 

(2.17) 

3. Numerical methods 

The method used here to obtain numerical values of the unknowns at the surface and at 
the body is a modification of that given by Forbes [5]. Points are chosen at the N 
equally-spaced values of the surface arclength sl, s 2 . . . . .  SN, with point spacing As = (s N 
- s l ) / ( N -  1). Similarly, M body points kl,  k z . . . . .  k g are chosen, with uniform spacing 
A k  = ( k  M -  k ~ ) / ( M - 1 )  in the variable k defined in equation (2.11). The unknown 
functions x ( s ) ,  y ( s )  and ~(s)  at the free surface are represented by point values x~, y~ 
and ~i, i = 1 . . . .  , N, and on the body, the functions u+(k) ,  u _ ( k ) ,  v+(k )  and v _ ( k )  are 
represented as u~-, uT, v/+ and v,7, i = 1 . . . . .  M. 

The radiation condition (2.2) is imposed at the first surface point, in a manner which 
also satisfies Bernoulli's equation there, by specifying 

y ,  = o ,  = ,t,'l = 1 ,  x ,  = ,t,, = s , .  ( 3 . 1 )  

The body condition (2.3) is imposed at the nose, and the Kutta condition (2.6) specified at 
the trailing edge, to give 

u~=u~-  = 0 ,  v ~ - = v i - = v ( ;  (3.2) 
+ - u T ~ -  + + = v ~ = O .  U M - -  U ~ # ,  V M 

The integral equations (2.13) and (2.14) are evaluated at the half-mesh points Si_l/2, 
i = 2  . . . .  ,N,  and k i_ l / z ,  i = 2 , . . . , M ,  and the integrals are approximated by the 
trapezoidal rule, ignoring the symmetrically-placed singularity as described by Monacella 
[10]. This yields a system of N + 2M - 3 non-linear, algebraic equations. 

Newton's method is used to solve this system, by proceeding in the following manner. 
To begin, values of the dependent variables at the halfpoints Si_l/2 and k ,_ l /2  are 
interpolated onto whole-mesh values according to formulae of the type 

=1 x x i ) ,  i = 2  . . . . .  N, x~-1/2 ~( i-1 + 
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i = 2  . . . . .  M, 

etc. on the body. An initial guess is now made for the vector [y~y~.. .  y'N] r of surface 
unknowns; these are usually set to zero. These approximate values of y',  i = 2 . . . . .  N, are 
sufficient to determine all the other dependent functions at the free surface, using 
equations (2.8), (2.9) and trapezoidal-rule integration. Thus 

x: = (1 -- y,2 )1/2, 

1 t X p ), x i = x i _  1 +~As(x~ + i- i  

Y* =Yi - ,  + ½As(y" + y /_ , ) ,  (3.3) 

CO;=( 1 -  2yi ] 

1 t t •i=•i21 "~Sms(~)i " { ' - ¢ i - 1 ) ,  i=2, . . . ,N .  

Now that approximate values for all the surface variables are known from equations 
(3.3), the 2 M -  2 algebraic equations which approximate the body integral equation (2.14) 
can be inverted immediately to yield the values of the dependent variables at the 
hydrofoi l .  In view of  the condi t ions  (3.2), we define the vector  U = 

+ + 
[ U1-- U 2 " ' "  U~4_ I U ~ / U 2  " ' "  U M-- | ] T o f  body values, eliminating t h e  v e r t i c a l  components o f  

velocity using equations (2.3) written in the form 

v / - = u ~ D + ( k , ) ,  v 7 = u ~ D _ ( k , ) ,  i = 2  . . . . .  M - 1 .  (3.4) 

Equation (2.14) yields the matrix system 

s v  = r v  + R ,  (3.5) 
where S and T are ( 2 M -  2) × ( 2 M -  2) matrices and R is a vector of length 2 M -  2 
which depends on variables at the free surface. Since ( S -  T)  -1 is a matrix which is 
independent of the changing surface values, it is stored at the beginning of the program 
and not recomputed. 

Equations (3.1)-(3.5) provide values for all the unknown functions, once an estimate 
has been made for the vector [y~.. .  y~]T. This estimate is improved using Newton's 
method. The integral equation (2.13) at the surface provides a system of N -  1 algebraic 
equations of the form 

Ei(y~,  y~ . . . . .  y ~ , ) = 0 ,  i = 2  . . . . .  N, (3.6) 

from which a correction vector [A2A3... AN]T is computed by solving the matrix equation 

 aE, 
j=2 ~yj, A j=  - E i ,  i =  2 . . . . .  N.  (3.7) 
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The Jacobian matrix of derivatives in equation (3.7) is evaluated by forward differencing 
of (3.6), and the vector [y~.. .  yfv] "r is updated by adding to it the correction vector 
[ A 2 . . . A N ]  T. 

This algorithm has been programmed on an NAS 6630 computer, and generally 
converges to a highly accurate solution of the algebraic equations within five iterations of 
Newton's  method. When N = 121 and M = 101, a total of 321 points, the programme 
takes about 40 minutes execution time. 

4. Presentation of results 

Figure 2 shows typical free-surface profiles computed with the present method. Here, 
F = 0.7 and a = 1, and the two profiles correspond to the two values of foil half-width 
fl = 0.05 and fl = 0.15. There are slight errors in the wave profiles due to the truncation of 
the free surface upstream at s I and downstream at su; these errors are manifested as a 
small wave train ahead of the foil and an inaccuracy in the last half wavelength 
downstream. Detailed descriptions of these numerical errors are given by Forbes and 
Schwartz [11] and Forbes [5], and the subject will not be discussed further here. Notice, 
however, that the familiar features of non-linear two-dimensional surface waves are 
present here; the wave crests are (slightly) more peaked than the  troughs, and there is a 
shortening of wavelength with increasing wave height. The first wave downstream is 
noticeably higher than the rest, and there is in addition a substantial rise in the free 
surface at the approximate position of the nose of the hydrofoil. 

The pressure P on the hydrofoil is also of interest, and can be computed from our 
numerical solutions using Bernoulli's equation 
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Figure  2. Free-surface profi les  for F = 0.7, a = 1 and the two dif ferent  values of foil ha l f -width  fl = 0.05 and 

•=035. 
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F i g u r e  3. P r e s s u r e  o n  t he  h y d r o f o i l  as  a f u n c t i o n  o f  x ,  fo r  F = 0.7, a = 1. R esu l t s  a r e  s h o w n  fo r  13 = 0.01 a n d  

B=0AS. 

p = ½F 2 - y -  ½F2(u 2 + 02). 

This quantity is shown in Fig. 3 as a function of x, for F = 0.7 and a = 1, and the two foil 
half-widths fl = 0.01 and fl = 0.15. When fl = 0.01, the foil is extremely thin, having 
degenerated almost to the branch cut assumed by linearized theory. Nevertheless, an 
important  difference exists between the qualitative predictions of linearized theory and the 
results for fl = 0.01 presented in Fig. 3. It  will be recalled that linearized theory predicts 
infinite fluid velocity at the leading edge, and consequently, negative infinite pressure 
there. It  is usually assumed that this is due to the fact that such theories ignore the 
presence of the stagnation point at the leading edge; this assumption would appear  to be 
confirmed by the results for fl = 0.01 in Fig. 3, in which the pressure rises abruptly to the 
stagnation value 1.245 at the nose x = - 1. 

The pressure profile in Fig. 3 for the half-width fl = 0.15 indicates a rather different 
flow pattern at the nose than for the case fl = 0.01. Observe that the stagnation pressure is 
attained on the lower face of the hydrofoil at about x = - 9 . 4 ,  indicating a fluid 
stagnation point at this location, rather than at the nose. Indeed the vertical component  of 
velocity at the nose is very large and the pressure consequently has large negative values 
there. On the top face of the hydrofoil, the pressure profile exhibits a small region of 
sawtooth behaviour near the nose. This is evidence of numerical inaccuracy in this very 
unstable region of the flow, and could be reduced by utilizing more grid points on the 
hydrofoil. However, we have employed 101 points on each face of the foil, and are already 
using our computing facilities to their practical limit. 
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F igu re  4. D o w n s t r e a m  wave  " a m p l i t u d e "  as a f u n c t i o n  o f  foil ha l f - l eng th  et, when  F = 0.7 a n d  fl = 0.01. 

As stated in the introduction, a major aim of the present study is to determine whether 
non-linear, drag-free solutions of the type described by Forbes [8,9] are possible in this 
problem. To do this, we have run our computer programme for nineteen different values 
of the foil half-length a, in the case when F = 0.7, fl = 0.01, and the results are shown in 
Fig. 4. Here, in order to reduce computing time, we have taken N = 121 free-surface 
points, but only M = 51 foil points, giving a total of 221 grid points overall. This reduced 
accuracy at the hydrofoil has little effect on the free-surface profiles, but results in a 
sawtooth numerical error in values of u and v on the foil, similar to that seen in Fig. 3. 
Consequently equation (2.15) cannot be used for the determination of the wave resistance 
R, and even (2.16) yields results of doubtful accuracy. We have therefore defined the 
quantity H to be the peak-trough wave height estimated from our free-surface profiles, 
and show the "ampli tude"  ½H as a function of foil half-length a in Fig. 4. It is clear that 
the downstream wave height H exhibits the familiar maxima and minima of many such 
wave-resistance plots; in addition, the work of Forbes [8,9] suggests that the values of a at 
which these extrema occur are likely to be strong functions of the foil half-width ft. 
Nevertheless, the local minimum which occurs at about a = 2.1 differs from zero, and we 
conclude that zero drag solutions are probably impossible for this problem. 

5 .  C o n c l u d i n g  r e m a r k s  

Numerical solutions have been obtained for fully non-linear, two-dimensional, potential 
flow about a hydrofoil submerged beneath a free surface. We have used an extremely 
efficient numerical method in which only the free-surface location is sought explicitly, and 
the velocity components on the body are then updated at each iteration. 

The numerical results suggest that non-linear, drag-free solutions do not exist for this 
problem. Of course, we have only investigated the case of a hydrofoil at zero angle of 
attack, and it may be possible to find them at other attack angles. Definite minima in the 
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w a v e  r e s i s t a n c e  d o  o c c u r  a t  c e r t a i n  v a l u e s  o f  t h e  foi l  h a l f - l e n g t h  ct, a n d  t h e  a c c u r a t e  

d e t e r m i n a t i o n  o f  t h e s e  v a l u e s  is e x p e c t e d  to  b e  o f  p r a c t i c a l  use  in  t h e  d e s i g n  o f  h y d r o f o i l  

c ra f t .  
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